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Abstract. In this paper, we investigate the behaviour of electrons in hydrogen-bonded chains
and show that an electron can be bound in the compression area of the proton sublattice
and becomes an electrosoliton state described by a bell-shaped electronic wave function.
The influence of motion of the heavy-ion sublattice on the velocity of soliton defects and
the cooperative transport of electrons and protons in hydrogen-bonded chains are discussed,
respectively. The stability of the solution is discussed.

1. Introduction

The charge transfer in hydrogen-bonded condensed matter, organic and biological systems
is an important and interesting problem. The proton transfer along hydrogen-bonded chains
has been recognized to be responsible for the energy and charge conduction by means of
the Grotthaus mechanism [1]. Solitonic defects are excited in the process of proton transfer,
i.e. ionic and bonding defects are formed. The former involve an intraband motion of the
(unique) binding proton, while the latter result from interbond or intermolecular motion of
the protons due to rotations of the molecules (e.g. the water molecules in ice). It has shown
that the ionic (I−) and bonding (B−) kink defects are carriers of a fractional negative charge
so that their combined dynamics generates a ‘proton hole’ transfereI− + eB− = −e, where
e > 0 is the unit charge of one proton, to the next bond. On the other hand, the ionic (I+)
and bonding (B+) antikink defects are carriers of a fractional positive charge, so that their
combined dynamics generates a proton transfer (eI+ + eB+ = e) to the next bond. Antikinks
excited in the proton sublattice possess excess fractional positive charge, corresponding to
localized compression in the proton sublattice (for example, the hydroxonium ion H3O+ in
an ice lattice), and kinks excited in the proton sublattice possess excess fractional negative
charge, corresponding to localized rarefaction in the proton sublattice (for example, the
hydroxyl ion OH− in an ice lattice). In fact, the hydrogen-bonded chain can be considered
to be composed of a proton sublattice and a heavy-ion sublattice. For example, the ice lattice
is composed of a proton sublattice (H+)x and a heavy-ion sublattice (HO−)x . Considering
the influence of the motion of the heavy-ion sublattice on the proton sublattice, the two-
component soliton model was suggested by some authors [2–6]. Because of the interaction
between two sublattices, soliton defects corresponding to the heavy-ion sublattice localized
deformation are excited [6]. On the other hand, there is a class of systems where the
protonic and the electronic nature of the conductivity coexist at least for certain ranges of
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temperature [7, 8]. In biological systems, the coupling between proton and electron transfer
is responsible for some reaction processes, for instance, there is coupling between proton and
electron transfer in the charge relay system ofα-chymotrypsin [9]. Thus, it is necessary to
research the behaviour of electrons, i.e. investigate the influence of the deformation of proton
and heavy-ion sublattices upon the motion of electrons. (Abdullaevet al had investigated
only the system of protons and electrons [10].) For the sake of simplicity, we do not alone
consider the interaction between electron and heavy-ion sublattices but incorporate it into the
coupling between protons and electrons because interaction between proton and heavy-ion
sublattices is considered. The results in this paper show that one electron can be trapped by
the lattice defects (slow antikink–kink pair or fast antikink–antikink pair) in the hydrogen-
bonded chain. The bell-shaped electronic wave function (electrosoliton state) is localized
in the compression area of the proton sublattice. The lattice defects and electrosoliton state
propagate along the hydrogen-bonded chain with the same velocity in pairs, representing
a bound state called the electrosoliton–soliton pair, which possesses a fractional negative
charge [11]. Moreover, the influence of motion of the heavy-ion sublattice on the velocity
of soliton defects is discussed. The stability of the solution is proved. Finally for the
concept of the electrosoliton–soliton pair, the conduction mechanism of the solitonic defect
in a finite-length hydrogen-bonded chain is given qualitatively.

2. Electrosoliton–soliton pair

Here we consider the interaction between electron and lattice defects in the hydrogen-bonded
chain. The total Hamiltonian of system is

H = Hpe +Hpi +Hi (1)

where

Hpe =
∑
n

[
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2
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(
dun
dt

)2
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is the Hamiltonian of the proton–electron system [11],
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)(
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is the Hamiltonian for interaction between proton and heavy-ion sublattices [6], and
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∑
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is the Hamiltonian of the heavy-ion sublattice [6].a is the lattice spacing.c0 andv0 are the
characteristic velocities of the proton and heavy-ion sublattices, respectively.ε0 is the barrier
height in the double-well potential.un is the displacement of thenth proton (massm1) along
the chain from one of the two minima in the double-well potential.ρn is the displacement
of thenth heavy ion (massm2) from its equilibrium position.u0 is the equilibrium position
of the proton.g is the coupling constant between the two sublattices.E0 is the energy of
the electron in the undistorted chain,J is the intersite transfer energy andχ > 0 is the
coupling constant of the interaction between the electronic and the protonic subsystems.
Finally, C+n (Cn) creates (annihilates) one electron on thenth site of the protonic chain.
The same Hamiltonian can be used in order to describe the dynamics of one electron hole
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in the chain. In this case,χ < 0, andC+n (Cn) creates (annihilates) one hole on thenth site
of the chain.

The one-electron state can now be written [11]

|9(t)〉 =
∑
n

An(t)C
+
n |0〉 (5)

where the probability amplitude is normalized to unity, i.e.
∑

n |An(t)|2 = 1. The mean
value of Hamiltonian in the system is written

E = 〈9|H |9〉 =
∑
n
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(6)

In the continuum approximation model, from the Lagrangian density we can derive the
equations of motion

ih̄
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= (E0− 2J
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− 2gau

∂u
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. (9)

Obviously, (7), (8) and (9) are coupled nonlinear equations. It is very difficult to solve
them. Here we use a self-consistent method, and let self-consistent solutions of (7) and (8)
have the following relationship

|A|2 = q1ux (10)

whereq1 is an undetermined coefficient. Substituting (10) into (8) and using the variable
transformationξ = x − vt , we may reduce (8) and (9) to the following equation [6]

∂2u

∂ξ2
+ αu− βu3 = 0 (11)

where

α = βu2
0 =

1
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m1m2(v
2
0 − v2)

]
(12)

and obtain their solutions

uk = σu0 tanh

√
α

2
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ρk = q2u (14)
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√
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√
β(v2
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and σ = ±1 is the polarity of the soliton.σ = 1 corresponds to the kink solution, and
σ = −1 to the antikink.

Substituting (10) into (7), we have

ih̄
∂A

∂t
− (E0− 2J

)
A+ Ja2∂

2A

∂x2
− χa
q1
|A|2A = 0. (16)

(16) is a nonlinear Schrödinger (NLS) equation, whereG = −χa/q1 is a coefficient of the
nonlinear term of the NLS equation. IfG > 0 (i.e. q1 < 0), (16) has an envelope-soliton
solution, while ifG < 0 (i.e. q1 > 0), (16) has a dark-soliton solution [13]. Here we are
interested in the envelope-soliton solution, so takingG > 0 (i.e. q1 < 0), the solution of
(16) is

As(x, t) =
(
C

8J

)1/2
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[
G

4Ja
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]
exp[i(kx − ωt)] (17)
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h̄
. (18)

Solutionsu(x, t) andA(x, t) must satisfy the self-consistent condition (10), so we have
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2
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whereq1 < 0, so taking the antikink solution (σ = −1), corresponding to the compression
area of the proton sublattice. From (19), we obtain

q1 = − a

2u0
(20)
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2
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[

1− χa2

2m1u0c
2
0

− 9J 2a2ε0

m1u
4
0c

2
0χ

2

]1/2

c0 (22)

is the velocity in the one-component soliton model. Ifv1 > v0, v corresponds to the upper
sign in (21) andv > v0, i.e. q2 > 0. Then (14) and (15) show that if the proton sublattice
produces an antikink, then the heavy-ion sublattice produces an antikink as well. They form
a fast antikink–antikink pair. In this case, the influence of motion of the heavy ions is to
decrease the velocity of the soliton. Ifv1 < v0, v corresponds to the lower sign in (21) and
v < v0, i.e.q2 < 0. Then, the antikink in the proton sublattice and the kink in the heavy-ion
sublattice will form a slow antikink–kink pair. In this case, the influence of motion of the
heavy ions is to increase the velocity of the soliton. Here the antikink–antikink pair and
antikink–kink pair are the lattice defects, i.e. the defects in proton and heavy-ion sublattices.
These lattice defects correspond to the compression area of the proton sublattice, thus, they
have positive fractional extra charge [11, 14].

From the above discussion, it can be concluded that one electron is trapped by the lattice
defects (slow antikink–kink pair or fast antikink–antikink pair) with a fractional positive
charge to form a bound state with a fractional negative charge. This electron trapped by
the lattice defects is described by a bell-shaped electronic wave function (17) localized in
the compression area of the proton sublattice and is called an electrosoliton in this paper.
The lattice defects (solitons) and electrosoliton propagate along the hydrogen-bonded chain
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with the same velocity (given by (21)) in pairs, i.e. they form a bound state called the
electrosoliton–soliton pair (or radical electron-soliton state [11]). Using the same way, we
can obtain the dynamics of one electron hole in the chain, where the bell-shaped hole wave
function is localized in the rarefaction area of the proton sublattice. One hole is trapped
by another kind of lattice defect (slow kink–antikink pair of fast kink–kink pair) with a
fractional negative charge to form a bound state with a fractional positive charge.

Using (6) and the continuum approximation model, we have the energy of the
electrosoliton–soliton pair

E = 1

2
m∗v2+

[
E0−2J +

√
2α3/2

3βa

(
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2
0+q2

2m2v
2
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+ 4ε0
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3
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2
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2
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]
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where

m∗ = 2
√

2α3/2

3βa

(
m1+ q2m2

)+ h̄2

2Ja2
(24)

is the effective mass of the electrosoliton–soliton pair. The binding energy of the pair is
u2

0χ
2/4J . It is well known that the internal energy of an exciton isE0 − 2J . From (23),

it is obvious that the internal energy of the bound state is lower than the sum of internal
energy of free lattice defects and free exciton.

In order to show the validity of the continuum approximation mentioned above, we
choose the experimental parameters, to estimate the soliton widthW = √2α, as follows
[4, 12]: a = 2.76 Å, u0 = 0.37 Å, c0 = 1.1×105 m s−1, v0 = 0.1c0, m1 = 1.67×10−27 kg,
m2 = 17m1, g = 1.0 × 10−10 kg m s−2, ε0 = 0.67 eV, J = 1.55 × 10−22 J,
χ = 1.0× 10−11 N. This gives soliton widthW ≈ 2a. Since the soliton widthW remains
much larger than the lattice spacinga, the continuum approximation is valid.

3. Stability of the electrosoliton–soliton pair

In order to show the stability of the solution, we present

A(x, t) = As + f (x, t) u(x, t) = uk + p(x, t) ρ(x, t) = ρk + h(x, t) (25)

whereAs , uk andρk are the solutions without perturbations,f (x, t), p(x, t) andh(x, t)
are perturbations. Substituting (25) into (7) and using (10), linearizing (7) with respect to
f (x, t), we derive

ih̄
∂f

∂t
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)
f + Ja2∂

2f

∂x2
+G

(
2f
∣∣As∣∣2+ f ∗A2

s

)
= 0. (26)

Substituting the solution (17) into (26), we solve it to obtain

f (x, t) = −3

(
G

8J

)1/2

sech
G

4Ja
(x − vt) tanh

G

4Ja
(x − vt) exp[i(kx − ωt)]. (27)

Consequently, since the solution (27) of the linearized equation (26) does not grow with
time, the solutionAs is stable under small perturbations.

Substituting (25) into (8) and (9) and using (10), in the co-moving frame (ξ →
x − vt, τ → t), linearizing (8) and (9) with respect top(ξ, τ ) andh(ξ, τ ), we derive

∂2p

∂τ 2
= 2v

∂2p

∂τ∂ξ
+
(
c2

0 +
χaq1

m1
− v2

)
∂2p

∂ξ2
+ 4ε0

m2u
2
0

(
1− 3u2

k

u2
0

)
p

+2ga

m1

(
∂ρk

∂ξ
p + uk ∂h

∂ξ

)
(28)



7934 Bin Zhou and Ji-Zhong Xu

∂2h

∂τ 2
= 2v
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)
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We take here

p(ξ, τ ) =
∑
i

ei�iτpi(ξ) h(ξ, τ ) =
∑
i

ei�iτ hi(ξ). (30)

Substituting (30) into (28) and (29), we get

�2
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)
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∂
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(
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∂
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)
− (v2
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)
∂2
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)
. (33)

(31) has the form of a Schrödinger equation. The stability of the solutionuk and ρk
is guaranteed if no eigenvalues�2

i of (31) are negative. Here we treat the operator
(−2i�iv∂/∂ξ ) as a perturbation to the HamiltoniañH . In the case without the perturbation
(i.e. let v = 0), as is known [15],

H̃20 = 0 (34)

where20 is the Goldstone mode,

20 =
(

duk/dξ
q2 duk/dξ

)
. (35)

It is clear that the eigenfunction duk/dξ is nodeless, i.e.20 is the ground state of the system,
corresponding to the ground state eigenvalue�̃2

0 = 0. In the case with the perturbation (i.e.
v 6= 0), according to the perturbation theory, we obtain

�2
0 = �̃2

0+
(
2�0v

)2∑
i 6=0

|W0i |2
�̃2

0− �̃2
i

(36)

where

W0i =
〈
20

∣∣∣∣(−i
∂

∂ξ

)∣∣∣∣2i

〉
. (37)

From (36), we can find�2
0 = 0. It follows that the ground state eigenvalue of (31) is

zero. Then, all the other eigenvalues are therefore positive. Since all solutions (30) of the
linearized equations (28) and (29) do not grow with time, the solutionsuk andρk are stable.

Thus, the electrosoliton–soliton pair is stable. The pair may be responsible for the
cooperative transport of electron and lattice defects in hydrogen-bonded chains.

4. Cooperative transport of proton and electron

When an external electric field is applied to hydrogen-bonded chains the solitonic defects
propagate along the chains and, if one can close the circuit from outside, a permanent
charge conduction is established. However, the protons are unable to leave the sample
which, indeed, is a finite length system. The conduction mechanism of the solitonic defect
in a finite-length hydrogen-bonded chain has been discussed by some authors [11, 14]. In
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their papers, the solitonic defects (i.e. the solitons in the proton sublattice, they do not
consider the motion of heavy ions) play the role of a ferryboat for electrons. Based on
the concept of the electrosoliton–soliton pair, the conduction mechanism in a finite-length
hydrogen-bonded chain can be given qualitatively as follows.

When a constant electrical field is applied to a finite-length hydrogen-bonded chain,
a lattice defect with a fractional positive charge starts moving to the negative electrode
(see [11] and [14]). When this defect arrives at the corresponding boundary, it will trap
one electron from the negative electrode and become an electrosoliton–soliton pair with a
negative fractional charge. The pair under the influence of the electrical field immediately
starts moving to the positive electrode. When this pair arrives at the corresponding boundary,
it will release the electron at the positive electrode and return to the lattice defect with
fractional positive charge. Thus this defect with a fractional positive charge under the
influence of the electrical field will move to the negative electrode again. The electrons are
transported by the electrosoliton–soliton pairs from the negative electrode to the positive
electrode and can close the circuit from outside, but the solitonic defects perform only a
back and forth shuttling motion in the hydrogen-bonded chain and do not leave the sample.
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